On the construction of gradient Ricci soliton warped product

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Harnack Estimates for Ricci Flow on a Warped Product

In this paper, we study the Ricci flow on closed manifolds equipped with warped product metric (N × F, gN + fgF ) with (F, gF ) Ricci flat. Using the framework of monotone formulas, we derive several estimates for the adapted heat conjugate fundamental solution which include an analog of G. Perelman’s differential Harnack inequality in [18].

متن کامل

A note on Kähler-Ricci soliton

In this note we provide a proof of the following: Any compact KRS with positive bisectional curvature is biholomorphic to the complex projective space. As a corollary, we obtain an alternative proof of the Frankel conjecture by using the Kähler-Ricci flow. The purpose of this note is to give a proof of the following theorem, which does not rely on the previous solutions of Frankel conjecture: T...

متن کامل

On the Completeness of Gradient Ricci Solitons

A gradient Ricci soliton is a triple (M, g, f) satisfying Rij +∇i∇jf = λgij for some real number λ. In this paper, we will show that the completeness of the metric g implies that of the vector field ∇f .

متن کامل

On the classification of gradient Ricci solitons

We show that the only shrinking gradient solitons with vanishing Weyl tensor are quotients of the standard ones Sn, S × R, and Rn. This gives a new proof of the Hamilton-Ivey-Perel’man classification of 3dimensional shrinking gradient solitons. We also show that gradient solitons with constant scalar curvature and suitably decaying Weyl tensor when noncompact are quotients of Hn, H × R, Rn, S ×...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Analysis

سال: 2017

ISSN: 0362-546X

DOI: 10.1016/j.na.2017.05.013